Author: Darryl Frierson

Pros and Cons of Individual Compressor Controls

Previously we described the 6 different types of Basic Air Compressor Controls but what kind of control would you want for your compressor. Her are few pros and cons of the controls to help you assess the needs of your compressor.

Start/Stops

Pros

  • Simple control using only a pressure switch
  • Motor and compressor operate only when needed which saves energy
  • Good for small compressors that are 25 HP or less (depending on application)

Cons

  • Frequent starting wears down motor and compressor
  • Pressure setting to stop must be higher than required system pressure to build storage and may increase energy use
  • Loses of pressure control in the range of 35 psi
  • Limited to small compressors

Load/Unload

Pros

  • Motor compressor runs continuously which reduces wear  and tear associated with too many frequent motor starts
  • Tighter range of pressure (approx 10 psi)
  • Provides adequate storage and offers energy-efficient control of rotary screw, reciprocating and some centrifugal compressors

Cons

  • If applied incorrectly short cycles cause  premature wear and tear. There is minimal or no power savings on lubricant-injected rotary screw compressors
  • There needs to be proper blow down time and the storage capacity required for lubricant-injected rotary compressors to achieve energy savings and prevent lubricant foaming
  • Requires over-pressurizing to maintain minimum system pressure

Modulating

Pros

  • The motor and compressor run continuously reducing wear
  • Tighter range of pressure control (10 PSI)
  • Steady progressive capacity control that matches demand

Cons

  • Pressure ratios increase as inlet pressure is throttled
  • Inefficient at lower loads(lubricant-injected rotary compressors limited to 40-60% capacity; centrifugal compressors limited by potential surge and may require discharge blow off)

Dual/Auto Dual

Pros

  • Combines features of modulating, load/unload. and start/stop
  • Shuts down compressors when unloaded for pre-set duration which in turn saves energy
  • Better selects operation mode for small reciprocating compressors

Cons

  • Makes the control complex
  • The Over-run timer must be set to limit premature starting and stopping

Variable Displacement

Pros

  • Energy-efficient control scheme that gets down to 50% of capacity
  • Matches displacement to demand without reducing inlet pressure or increasing ratios of compression

Cons

  • Makes the control complex
  • High initial cost
  • Only available for 50 HP+ compressors

Variable Speed

Pros

  • Energy-efficient and precise control
  • Various rotating speeds and giving more displacement and power. These are directly proportional to speed rotation

Cons

  • Makes the control complex
  • High initial cost
  • Reduced full load efficiency
  • Efficiency of rotary screw compressor ends drop at lower or higher speeds

See Behind The Scenes of the Cold Water Kid

FS-Curtis and Arizona Air Compressor are proud to be the sponsor of Matt Ludlow aka Coldwater Kid. Check out some behind the scenes footage of the Coldwater Kid and the whole Top Fuel Race Team.

The Coldwater Kid Top Fuel team is heading into their seventh season of competition in sand drag racing. The Family operated team from Litchfield Park, Arizona is owned by Dwight Ludlow with his son Matthew piloting the 300” nitro-burning Top Fueler. They are three-time Dome Valley Top Fuel Shootout champions (2009, 2011, and 2013). At the 2013 Dome Valley March Madness event, Matthew piloted the Hemi-powered Fueler to his career best pass with a sizzling 2.301/162MPH blast. They also recorded the Quickest Run for Top Fuel in the 2011 race season with a 2.308/158MPH run in the final round of that season's Dome Valley Top Fuel Shootout. This team has also been featured on SPEED Channel's "Lucas Oil On The Edge" & Fox Sports Net's "Race Freaks" TV Shows during the Inaugural Dirt 300 Nitro Nationals in Albuquerque, NM. At this event, the Coldwater Kid team earned a solid runner-up finish.

Thanks you to the Coldwater Kid Racing Team (Matthew Ludlow (Driver), Dwight & Marie Ludlow (Car Owners), John Aleman (Crew Chief), and Jim Green / Charlie Starns (Crew)

The 6 Types of Basic Individual Compressor Controls

Compressor controls are designed to match compressor delivery with compressed air demand, by maintaining the compressor discharge pressure within a highly specified range.  This discharge pressure should be set as low as possible to minimize the energy usage.

Compressor systems are typically composed of multiple compressors delivering air to a common plant air header. The combined capacity of these machines is generally sized to meet the maximum plant air demand. System controls are almost always needed to orchestrate a reduction in the output of the individual compressors during the times of having lower demand. Compressed air systems are usually designed to operate within a fixed pressure range and to deliver a volume of air that varies with system demand. System pressure is monitored and the control system decreases compressor output when the pressure reaches a predetermined level. Compressor output is then increased again when the pressure drops to a lower predetermined level.

There are 6 basic types of individual compressor controls that a person has to take into account when looking into purchasing and using air compression:

Start/Stop

  • Turns the motor which drives the compressor on or off in response to a pressure signal (seen on reciprocating and rotary compressors)

Load/Unload

  • Allows the motor to run constantly but unloads the compressor when a predetermined pressure is reached. The compressor reloads at a predetermined lower discharge pressure. This is also sometimes referred to as constant speed or constant run control (seen on reciprocating, rotary, and centrifugal compressors).

Modulating

  • Restricts passage of air to the compressor to progressively reduce compressor output to a specified minimum, when the compressor is then unloaded. This is also referred to as throttling or capacity control (seen on rotary and centrifugal compressors).

Dual/Auto Dual

  • This controller is commonly seen in small reciprocating compressors, allows the selection of either Start/Stop or Load/Unload. When used in a lubricant-injected rotary compressor it provides modulation or load/unload control to a preset reduced capacity. When unloading the addition of an over-run timer will stop the compressor after running unloaded for a preset time.

Variable Displacement

  • This controller allows progressive reduction of the compressor displacement without reducing the channel opening (seen on reciprocating and rotary compressors).

Variable Speed

  • This controller adjusts the compressor capacity by varying the speed of the electric motor driving the compressor in response to system signals.

Learn more about the these six basic compressor controllers and more about other FS Curtis products

4 Ways to Get Efficient Rotary Air Compression for the Summer

4 Ways to Get High Level Rotary Air Compression for the Summer

With high summer temperatures fast approaching please make sure your Rotary Compressor is prepared for the change in climate. Here are 4 tips to keep your Rotary Compression at peak performance for the summer.

  1. Lubricant and Coolant Levels

Is your lubricant and coolant low? Is it due for a fluid and filters service? Please note that running FS-Curtis synthetic fluids will reduce the heat generated by your compressor. The compressor oil serves as coolant in oil flooded rotary compressors. In rotary compressors, the compressor oil is circulated 7 or more times per minute through the machine. This is why oil levels become more critical in the summer. To be sure of the condition of your air end and bearings we recommend an oil analysis by any of one of distributors.

  1. Air Density

In the summer your compressor will have a lower performance. Make sure you install a new intake filter for the hot summer days. Please be aware that dirtier environments require more frequent intake air filter changes.

  1. Having Clean Compressor Air and Oil Coolers

A clean cooler may be the difference between normal operation and a high temperature shut down. Many times synthetic compressor oils are fruitless because the oil breaks down prematurely due to overheating. To protect from high acid numbers, loss of lubricity and increased viscosity, long oil change intervals must be monitored with frequent lube analysis, particularly when exposed to high ambient temperatures. Please contact your local FS-Curtis service company for a compressor “health” check.

  1. Hot Ambient Air and Moisture

Most lubricated, air cooled, rotary screw compressors run 100 to 110 degrees F above the ambient temperature. If your compressor room is over 100 degrees, you are already in trouble. Cross flow ventilation is advisable in non ducted compressors. If your compressor oil sump or airend discharge is more than 120 degrees F over ambient temperature in the room, you need to find out why. FS Curtis has factory approved Air Treatment accessories to minimize moisture in your system and water in the air lines.

10 Steps to Saving Compressed Air System Operating Costs (6-10)

Small adjustments can reduce your operating pressure and energy costs while improving flow rates and output. Learn the final steps you can take to optimize your compressed air system and save energy costs. Make sure that you also know the first 5 things you can learn to "Save your Compressed Air System Operating Costs"

  1. Review Piping Infrastructure. Many systems aren't optimized.
    A piping system design should optimize transfer of compressed air at the desired flow and pressure to the point of use. Increasing the size of a pipe from two to three inches can reduce pressure drop up to 50 percent. Shortening the distance air has to travel can further reduce pressure drops by about 20-40 percent.

The more flow through a pipe the greater the pressure drop will be. Pressure drop in a pipe increases with the square of the increase in flow, which means if the flow is doubled, the pressure drop will increase four times. Air distribution piping should be large enough in diameter to minimize pressure drop.

How can FSC features and benefits help with this step? If your compressed air piping system was installed years ago when your compressor was much smaller, this might be an indication that the distribution pipes are too small.  A quick guide is to look at the air compressor outlet size. If your distribution piping is smaller than your air compressor outlet size, then it may be time to get your FS Curtis Distributor in to evaluate your piping system. If up-grades are needed, FS Curtis offers a modular, aluminum piping system that is easy to install and is a cost effective alternative to copper or steel piping.

 

  1. Change Filters Systematically. Not every once in a while.
    Inspect and replace filters systematically to ensure the quality of your air and prevent pressure drops. Go beyond the air compressor and compressor room. There are several air-line and point-of-use filters within the facility. Those are just as important to maintain as the air compressor and air compressor room filters.

How can FSC features and benefits help with this step?  Your FS Curtis Distributor will provide you with a complete Filter Package located on your compressed air system supply side.  Your process and type of equipment used will determine the level of air quality needed.  If you are not sure what you need, ask your FS Curtis Distributor who can guide your selection using an industry standard selection chart.

 

  1. Recover Heat. Compressing air generates heat - reuse it!
    It's simple physics that compressing air gives off heat, and as much as 90 percent of that heat can be recovered for use in your operation. For example, you can produce hot water for washrooms or direct warm air into a workspace, warehouse, loading dock, or entryway. The savings can really add up.

How can FSC features and benefits help with this step?  A simple heat recovery step can be making sure the hot air from your compressor room is directed into a nearby work space. If you have a larger rotary screw compressor with and e-COOL® Technology, you may find capturing the exhaust air from your air compressor and ducting into your facility during the heating season.  More aggressive heat recovery systems can be used to pre-heat water or process materials if you operate larger compressor systems.

  1. Emphasize Proper Maintenance. Ignoring maintenance costs more.
    As with most industrial machinery, a compressor runs more efficiently when properly maintained. Proper compressor maintenance cuts energy costs around one percent and helps prevent breakdowns that result in downtime and lost production. Protect your reputation and profits with proper maintenance.

How can FSC features and benefits help with this step? Your FS Curtis i-Command® Touch Control will help monitor your compressor for items needing maintenance as well as sending signals showing maintenance alerts.  Having your FS Curtis Distributor establish a scheduled service interval based on the number of hours your compressor runs per year will save you money in the long run.  Take advantage of your Extended Warranty by using correct parts and lubricants at the correct time. If you skip service and don’t do maintenance, then you can expect that future warranty claims if needed, may be rejected.  Just like you car, if you don’t take care of it, it won’t take care of you!

  1. Identify and Eliminate Inappropriate Uses of Compressed Air.
    Inappropriate uses of compressed air include any application that can be done more effectively or more efficiently by a method other than compressed air. For example, high pressure air often is used for cooling or applications where much lower air pressure is required.

How can FSC features and benefits help with this step? Your FS Curtis Distributor can help you with this. If you have a Compressed Air Leak Survey scheduled, the Auditor normally is looking for inappropriate uses of compressed air at the same time.  Common mis-uses are: blowing off a work station with an air gun instead of using a hand brush; using an air stream as a personal cooler instead of a fan; Plus many, many more ways…..

10 Steps to Saving Compressed Air System Operating Costs (1-5)

The first step to reduce compressed air energy costs is to measure and monitor your compressed air system's energy consumption, flow rates and operating air pressure. Your FS-Curtis Distributor can help you with your understanding of your compressed air system through an assessment or audit of your system.  The FS-Curtis Distributor will provide you with a report which will help you see how your air compressor(s) are being controlled, how much energy they are using, and how much air flow and pressure your system is using.  Recommendations can be made to help you reduce your operating costs and return those losses back into profit for your business.  Small adjustments can reduce your operating pressure and energy costs while improving flow rates and output. Here are 10 steps you can take to optimize your compressed air system and save energy costs.

  1. Turn It Off.
    There are 168 hours in a week, but most compressed air systems only run at or near full capacity between 60-100 hours. Depending on your shift pattern, turning your compressors off during the evenings and weekends could reduce your energy bills up to 20 percent.

How can FSC features and benefits help with this step?  Here’s a suggestion to help you turn off your compressor effortlessly.   Look into the FS Curtis Nx Series of Air Compressors using the i-Command® Touch Control. This advanced compressor controller can be set to turn off your air compressor at the end of a shift or workday automatically.  Another energy-saving option i-Command® Touch Control is to allow the system to reduce the system pressure during non-production hours.  Let’s say you operate several CNC machines which need to keep 80 psi in order to maintain the tool settings. So your i-Command ® Touch Control can be set to reduce the system pressure down to the 80 psi range during your off shifts.  This saves you electric costs because for every 2 psi you can drop your system pressure, you reduce your electric costs by 1%.  So that 20 psi reduction just reduced your electric usage by 10% for the non-productive hours…

  1. Fix Existing Leaks.
    A quarter-inch air leak at 100 psi will cost you more than $2,500 a year. Pipe systems, hose connections, and filter/regulator housings older than five years can have leaks of up to 25 percent. Because it takes energy to generate compressed air, any air that leaks is money wasted. Approximately 80 percent of air leaks are not audible, so to minimize these problems, third-party help in detecting these leaks may be a necessity.

How can FSC features and benefits help with this step? Your local FS Curtis Distributor can help you with a leak survey using an ultra-sonic leak detector.  They can find leaks in your system and pneumatic equipment without shutting down your production. The survey will provide you with a list of items needing attention and repair. Your utility may offer a cost-sharing program to help pay for the survey. You can have your maintenance team make the repairs or have your FS Curtis Distributor make the repairs.

  1. Prevent New Leaks.
    As Benjamin Franklin said, “An ounce of prevention is worth a pound of cure.” So, be proactive and look inside your piping system. A clean, dry pipe indicates good quality air and no corrosion issues. Dust in the pipe is caused by particles in the compressed air. If compressed air is not filtered, or if the filter is clogged, pressure drops will occur and the risk of end product contamination will increase. Sludge in the pipe is bad news and must be fixed immediately. Dust and sludge in a compressed air piping system will cause corrosion very quickly and will greatly increase the number of leaks. Dried and filtered compressed air keeps piping clean.

How can FSC features and benefits help with this step? Your FS Curtis Distributor will often recommend installing a Flow Meter at the point where your compressed air leaves the compressor room and flows to the “Demand Side” of your air system.  Some Flow Meters can be tied into your building’s data logging equipment. If you don’t have a data logging system, just setting up a simple log sheet so when your maintenance staff make their daily check on the air compressor, they can write down the flow rate seen on the Flow Meter screen.  If you start to see an increase in the Flow numbers, it’s time to start to investigate.  Did you add new equipment that takes more air? Did a process change? If nothing changed, its time to look for air leaks again!

  1. Reduce Pressure. Run at required pressures, not beyond.
    Each two psi reduction cuts energy consumption one percent. Check the system pressure and resist the urge to turn up the pressure to compensate for leaks or drops in pressure due to piping problems or clogged filters. A central supply side controller can greatly reduce the operational pressure band and orchestrate air production much more efficiently and effectively.

How can FSC features and benefits help with this step? Your FS Curtis Distributor is a good resource to help you. They can help you establish a pressure profile of your facility. Let them help you find what process or equipment is needing the highest pressure.  Often we find air supply systems running at 15 to 50 psi higher than what is really needed.  A simple DemandSmart® Flow Controller may help you manage your demand side pressure and flow. Not only will you reduce your energy bill, but your facility may have less wear on air tools and improve your product quality due to a constant air pressure in our plant.  Have your FS Curtis Distributor include checking needed down-stream point of use filters for pressure drop and clogged filters.  Sometimes folks crank up the pressure to get more pressure to the equipment, when a change in the filter element is really needed.

  1. Check Drains. Are your condensate drains stuck open?
    Condensate drains on timers should be adjusted periodically to ensure they open as intended or aren't stuck open. Better yet, replace timer drains with zero-loss drains to stop wasting compressed air.

How can FSC features and benefits help with this step? First, when you purchasing a new air compressor select an energy saving zero-loss drain. While the zero-loss drain may have a higher investment price, you will not be losing compressed air every time the timer opens the drain valve. The opening of the timer drain can cause the compressor to come on for a short period of time causing an unneeded motor start and extra wear on the air compressor.  Always make sure your FS Curtis Distributor is checking your auto drains for correct operation when they are doing your scheduled maintenance.

See the Final Steps to Saving Compressed Air System Operating Costs

What Can I Do to Reduce the Cost of Operating My Compressed Air System?

This is a question that a business owner should ask…   What can I do to reduce the cost of operating my Compressed Air System?

For years now, the whole industrial world has been listening to the experts that want to help you reduce your electric bill by selling you a more energy lighting system, heating and air conditioning system, speed controlled pumps, and automatic “do-dads” that promise a lower power bill.  The Air Compressor industry has been drawn into this energy-saving charge because in most facilities, the electric motor in the compressed air system can be the largest and most powerful electric device in the building. So the air compressor has become one of the favorite targets of the utilities wanting to reduce the peak load on a local power grid. You’ve heard all of the sales pitches now from both the compressor guys and the power companies. But there may be low-cost actions you can take to make your compressed air system more efficient and further reduce your monthly electric bill.

First, find ways to reduce your existing air systems’ operating costs. You may not need to pay for a compressed air system audit, unless you don’t have the time or experienced staff to conduct your own system assessment. Sometimes, just focusing your facilities manager on reducing the cost of the compressed air system can work. Sometimes having a trusted air compressor vendor works well. And sometimes you may need the help of a paid compressed air auditor if you’re budget allows.  However, as a starting point there are some things you can do on your own first.

According to CAGI (Compressed Air and Gas Institute), the most expensive component in the total cost of compressed air is energy. In fact, over the lifespan of a typical compressor, energy typically costs several times more than the purchase price of the compressor. The bottom line, maximizing energy efficiency saves you money.

At the beginning, you must know what your compressed air system is doing and why.

  • What is the highest pressure required by your equipment and processes?
  • What equipment and processes require the highest pressure?
  • What machine or process truly needs that much pressure and flow?
  • How clean and pure must your compressed air supply be in order to not cause product “do-over’s” caused by water or oil in the air lines?
  • What is the lowest and the highest rate of flow to the demand side of the piping system, and what causes the increased demand for flow?

If you can’t answer these basic questions for your compressed air system, then you really don’t understand or manage your compressed air system effectively.  And you are probably wasting a lot of money that could easily be turned into profit dollars.

The first step to reduce compressed air energy costs is to measure and monitor your compressed air system's energy consumption, flow rates and operating air pressure. Your FS-Curtis Distributor can help you with your understanding of your compressed air system through an assessment or audit of your system.  The FS-Curtis Distributor will provide you with a report which will help you see how your air compressor(s) are being controlled, how much energy they are using, and how much air flow and pressure you system is using.  Recommendations can be made to help your reduce your operating costs and return those losses back into profit for your business.  Small adjustments can reduce your operating pressure and energy costs while improving flow rates and output.

Learn about the 10 Steps to Saving Compressed Air System Operating Costs (1-5)

Once Again…. Nx Series is Plant Engineering’s Product of the Year Gold Winner!

The NxD45-90kW won over other compressor manufacturers. This award is noteworthy because our customers and people within our industry vote for the best product. We could not have done this without the hard work and dedication of our FS-Curtis team and the support of our global team.

The Nx Series offers a space-saving profile that’s easy to install while accommodating limited floor space. The integrated separator, MPV and thermostatic valve reduce connections by up to 90% -- meaning fewer opportunities for leaks. The Nx series also comes in variable speed drive for 8-90kW for even more efficiency and energy savings opportunities.

Learn more about the award-winning NX series and why it is a bona-fide winner!!

What To Consider When Purchasing a Rotary Air Compressor?

Let’s say you buy a Volvo, arguably considered one of the safest cars on the road, and you drive it 70 mph into a brick wall (by the way, don’t do this, it ruins the paint job), is it the car’s fault that it may no longer run?

The same scenario applies to equipment. If the OEMs installation recommendations are not adhered to, there will be a high degree of probability that the compressed air equipment will not be reliable, will not experience the stated longevity, may require above average maintenance, may consume more electrical energy than required and may not consistently provide the compressed air quality required by production.

While it’s impossible to cover all of the things you need to consider when installing a rotary air compress (and we hope it’s an FS-Curtis), this short article is intended to help avoid the equivalent of driving your car into a brick wall.

Electrical

1) Have your system voltage measured. The most common electrical utility voltages in the United States are 200 volt, 208 volt, 230 volt, 460 volt. Electrical utilities guarantee a voltage supply tolerance of + 10%.  For example, if the voltage stated supply is 230 volts it could measure at any given time from 207 up to 243 volts. Most electrical utilities attempt to hold the supply voltage to + 5%. Operating electrical motors off design or away from their nameplate voltage will generate additional heat leading to reduced motor life expectancy. The majority of induction motors, 5 hp through 600 hp supplied to the U.S. market, are 230 & 460 volts; however, 200 & 208 volt systems are becoming more popular. If a 230 volt name plated motor is operated on a 200 to 208 volt system it will operate in an elevated heated condition leading to extremely reduced motor life. This is not a recommended practice. There are motors specifically designed for 200 & 208 volt operation. For these applications motors name plated as such should be used.

2) Many air compressors operate into the motor service factor. As such, request the package full load operating amp draw from the manufacturer to properly size the electrical utility supply equipment (i.e., wire, electrical quick disconnect, overloads, transformers). Seek out a qualified electrical contractor in your area to assist in proper electrical utility modeling and sizing.

Placement

1) Proper placement and mounting is vital. Request a General Arrangement (GA) drawing from the OEM for each piece of compressed air equipment purchased. The GA drawing should illustrate the weight and recommended clearances to be maintained around the equipment. The floor will need to support the static weight of each piece of equipment. The equipment should be secured to the floor to prevent it from shifting around imparting stress on connected utilities such as piping, electrical and ducting. In addition, many states have adopted seismic codes mandating equipment be structurally secured to the floor. Many floors appear flat to the eye but are not flat enough to meet accepted equipment mounting practices. Many floors can be crowned (bowed) or have undulations. When securing equipment to a floor it is important to identify floor imperfections filling the air gaps with shims. When properly shimmed, the tightening of the mounting bolts will not bend or distort the equipment frame. Frame distortion will lead to excessive equipment vibration. Excessive vibration causes premature component failure which reduces machine reliability, increases cost of ownership and could potentially create an unsafe situation.

Proper clearances should be adhered to. These recommended clearances provide boundary area around the machine for safe, effective operation and servicing of the machine. This boundary area also allows adequate cooling airflow around the machine.

Piping

All piping should be properly supported as to not impart stress on the equipment. When connecting piping to the equipment pipe connector, it should be supported with proper tooling to prevent the equipment connector from turning during the piping tightening process. If the equipment receiving connector is allowed to turn (rotate) it very well could damage internal components to the equipment. Air piping should be properly sized and configured to prevent short cycling of the air compressor controls. A rule of thumb is to always use piping at least the size of the supply connection of the air compressor. If the dryer connections are larger don’t worry, the reason could be the dryer is oversized due to rerating or simply the fittings are larger to slow the compressed air velocity down through the dryer. The piping exiting the dryer can be the same size as the air compressor connection or the outlet piping size of the dryer can be used to establish the piping downstream of the dryer.

Ambient Air

If the ambient air conditions can drop below 32°F measures should be taken to prevent the compressed air equipment from being exposed to this as it will freeze up. During air compressor operation the most effective way to condition the room temperature is to use the heat generated by the operating air compressor(s). Excessive heat can be discharged from the room by way of a properly sized wall fan. The wall fan can be thermostatically controlled to keep the room at a constant temperature. If there are times when all of the compressed air equipment is not operating, an auxiliary heating system should be considered.

Air-cooled rotary screw air compressors gives off 2545 btus/hr per horsepower.

Example: A 50 horsepower air-cooled rotary screw air compressor discharges 127,250 btus/hr into its surrounding environment.

That is enough heat to keep a 1500 square foot home comfortable in the dead of winter with outdoor temperatures below 32°F.  Many of these air compressors are installed with little thought of eliminating heat build-up around the air compressor. The heat discharged into the ambient air surrounding the air compressor is continuously cycled through the heat exchangers elevating the temperature. Unchecked, the temperature will rise to an unacceptable level, eventually overheating the air compressor & shutting it down. Ducting can be attached to the air compressor to directly route the cooling air discharge outdoors or away from the air compressor. Wall or ceiling fans can also be strategically placed in the room to exhaust the hot cooling air outside. Either way, an adequate amount of replacement cooling air must be brought into the room.

All installations have contaminants in the ambient air. Contaminants can negatively impact an air compressor in many ways. Two critical ways are indigestion into the air compressor itself with the other being fouling of the air-cooled heat exchangers. The best way to determine if the air compressor is digesting an abnormally high amount of contaminants is to consistently perform oil analysis. The oil analysis should look for components not normally part of the oil make-up. The results need to be properly interpreted.

In the case of a lubricated rotary screw air compressor, all of the ambient air drawn into the machine for compression flows right past or through the airend bearings. Too much ingestion of particulate will damage the bearings. The oil not only cools the air during compression it also washes the contaminants out of the air. Over time these contaminants will build up continuing to be cycled through the bearings.

Example:  A 10 micron particle should be able to flow through an anti friction bearing suspended in the oil film without damaging the bearing surfaces.

This does not account for multiple particles clumping together, which will damage the bearing surfaces. Two solutions for reducing digestion of contaminants are to install an air filter with a lower micron rating and higher efficiency rating. The ratings should be adjusted until the oil analysis indicates the level of contaminants is satisfactory. Remember, as the rating of the inlet air filter is increased the surface area should also be increased or the air filter may have to be changed out too frequently from excessive fouling. The second solution is to relocate the inlet air filter to a remote environment which is cleaner than the immediate area around the air compressor. The piping used to remote mount the air filter should be non-ferrous. PVC works great as it is light, easy to assemble and inexpensive. Connect it to the air compressor air end with an easily removable joint in case machine repairs or troubleshooting is required. The piping i.d. should be no smaller than the i.d. opening in the OEM supplied inlet filter mounting assembly. For every 10 feet of inlet pipe run, the pipe diameter should increase one size or 1". If the inlet air filter is relocated outdoors it should be protected from digestion of rain or snow.

Relocation of the inlet air filter is a recommended solution when the surrounding ambient area around the air compressor contains hazardous vapors or fumes. There are air filters which can remove hazardous fumes or vapors; however, they are costly to purchase and maintain.

If you’d like more information about FS-Curtis rotary screw air compressors, please click on the icons below to download product literature. I you have questions or would like more information or pricing, please visit our Distributor Lookup page on our website to locate a distributor in your area.

ECO Scroll-The Next Phase of Clean Compressed Air

FS-Curtis introduces the ECO Series Clean Oil Free Air Compressors

St. Louis, MO. March 14, 2017-

FS-Curtis., a leading manufacturer of reciprocating and rotary air compressors since 1854 is proud to introduce the new ECO Series Oil Free Air Compressors.

FS Curtis Eco Scroll oil-free air compressors are ISO 8573-1 CLASS 0 certified compressors which are energy efficient, easy to operate and maintain, quiet and save space in your facility. A failure of components in any oil-injected compressor can result in oil contamination which will cause expensive damage to downstream products and processes. ECO series requires no oil, it delivers Class 0 clean and efficient compressed air, which means that there is no risk of oil contamination or the expenses associated with it.

The Eco-Series has many advantages to assist with new ecological and technological challenges faced by many types of business that require compressed air needs. Some of advantages are:

Ecologically Conscious

  • Environmentally friendly Class-0 clean and efficient air
  • No oil contamination, designed to meet ISO8573-1
  • Approved and certified by TÜV Rheinland® (Germany)
  • Small footprint, modular design

dbA Shield Noise Reduction

  • Extremely quiet operation (as low as 56 dbA)
  • Very low vibration level (5 mm/s or less)
  • To be installed where quiet setting is important

Quality Components

  • Higher reliability - Fewer moving parts
  • Exclusive Eco-Series scroll airend
  • High Efficiency TEFC motor
  • Maintenance friendly

Compressed air requirements have changed drastically as industries push to become ecologically friendly. The Eco Series can help customers in a multitude of different industries meet these changing regulations/requirements:

Life Sciences:

  • Medical (breathing air source*, operating surgical tools)
  • Dental (air tools will come in direct contact with the patient)
  • Pharmaceutical (fermentation, conveying, mixing, control, powdering, dehydration and vaporization)
  • Laboratories (universities, control air, lab air, petrochemical)

Food and Beverage

  • Fermentation, Conveying, Dehydration,
  • Packaging, bottling, cleaning, filling and capping
  • Air sparging/sprinkling

Electronics

  • Assembly, cleaning
  • N2 replacement with CDA (clean dry air)

Air Separation

  • Oxygen and nitrogen generation

Automotive Painting (Point of use)

  • High quality painting, alleviates costly repairs due to oil carry over

*Must be used with approved clean up equipment

About FS-Curtis/CURTIS-TOLEDO, Inc.
Since 1854, FS-Curtis has been designing and manufacturing solutions for industry. The FS-Curtis Air Compressors brand continues to be the symbol of quality and excellence in the design and manufacture of air compressors. Dedicated to customers and loyal distributors, our brand names are synonymous with Legendary Reliability since 1854.  FS-Curtis is proud to be ISO 9001:2008 and ISO 14001:2004 certified.

If you would like more information about this product, please visit www.fscurtis.com or contact Darryl Frierson at 314.383.1300 or email at info@fscurtis.com.

Distributor of the Month- Pro Compressor

DISTRIBUTOR OF THE MONTH- PRO COMPRESSOR

Pro Compressor, Allentown, Pennsylvania has been in business since 1994. Bob Dietrick owns the successful independent compressor house and has built his loyal customer base by providing exceptional service at competitive prices. Pro Compressor as been an FS-Curtis  Distributor serving the Leigh Valley region of Eastern Pennsylvania since they opened for business.

Dietrick began his career in the air compressor industry in the late 70’s selling Joy compressors and Wilkerson air dryers and filters. In the mid 80’s he formed a business with a partner selling Champion and Grimmerschmidt compressors. Then in 1994, Bob started Pro Compressor in his garage at home, building on his loyal customer base and expertise in keeping his customers compressors in top working condition.  He selected Curtis Compressors to be his main brand and has been selling FS-Curtis products since that time. As the business grew, he moved operations to the present location on North New Street in Allentown.

The market served by Pro Compressor is the Leigh Valley region which includes Allentown, down to Philadelphia, and north to Pocono Mountain region. The focuses of Pro Compressor are industrial companies such as: metal processing, electronics, wood products, and food and beverage manufacturers.

Today, Pro Compressor has a staff of 4 full-time employees including 2 field service technicians, an inside Sales and Customer Service manager, an outside sales engineer (Bob’s main role) and a Part Time technician. Bob’s son Matt heads up the Service Division. All of Pro Compressor’s technicians are factory trained on all FS-Curtis  rotary and reciprocating compressors, as well as FS-Curtis  Variable Speed Drive and Electronic controls.  So confident in their technical abilities, FS-Curtis  regularly calls on Pro Compressor to support customers’ outside of their normal marketing area as needed. Pro Compressor is a valued member of the FS-Curtis  Platinum Distributor Council and works with other FS-Curtis  Platinum Distributors in advising both marketing and product development projects.

Pro Compressor Web site:  http://procompressor.net

 

 

When Should I Service My Oil Flooded Rotary Screw Air Compressor?

Each manufacturer’s make and model of rotary screw air compressor gives specific guidelines for preventative maintenance in the operations manual sent with the air compressor. You’ve invested a good deal of money in your new compressor, to protect your new investment it’s a wise idea to follow these preventative maintenance procedures. Keep in mind this is not a comprehensive list, but it’s a good start and will help give peace of mind knowing you are not neglecting your air compressor.

Every manufacturer of rotary screw air compressors provide an Operators Manual with specific guidelines for preventative maintenance. You’ve invested a good deal of money in your new compressor, to protect your new investment it’s a wise idea to follow the preventative maintenance procedures. Some compressor designs may require more steps and checks, but here is a good place to start to get the longest life out of your investment

Daily:   Check for abnormalities (unusual sound, vibration, leaks, warnings or alarms on the controller, etc.)

  • Check oil level
  • Monitor temperature and pressure
  • Check control panel for any alarms or maintenance lights

Monthly: Perform Daily checks

  • Clean inlet air filter and enclosure filters.
  • Check operation (load and unload, low and high pressure set-points, maintaining pressure, etc)

Quarterly: Check hour meter and check the maintenance schedule to determine if its time for maintenance to be scheduled. Your compressor may require lubrication change at 2,000, 4,000 or 8,000 hours depending on the manufacturer’s recommendations.

  • Take oil sample if needed
  • Check separator scavenger line flow (if applicable)
  • Check v-belts (if applicable)
  • Perform daily and monthly checks

Semi-Annual or 4000 hours:  Perform Quarterly Check list.

  • Change air/oil separator filters (spin on or drop in type)
  • Take oil sample and sent to compressor vendor

Annual or 8000 hours: Start by checking annual maintenance list for manufacturer’s recommendations:

  • Change lubricant
  • Change air / oil separator (drop in type)
  • Perform quarterly checks

 

Keep in mind; these are the basic maintenance items needed to keep an oil flooded rotary screw compressor in good operation. This preventative maintenance program is designed for a standard condition, but as we all know most installations for air compressors would be considered dirty and dusty environments.

Another factor that is critical to the life of a compressor is the actual run time. All rotary screw compressors underlying guideline for maintenance is hours of operation. Most installations never operate 24 hrs per day / 7 days a week. There are only 8760 hours in a year and anything less than 24 hours will result in lower hours, which affect the amount of maintenance needed for each installation.

So, with all of these factors to consider, what does an owner of an oil flooded rotary screw compressor do to properly maintain the air compressor to ensure long reliable operation?

To answer this question we need to look at several factors:

1)   Environment

First the environment is the one factor that governs all of the others. If your compressor is running in a dirty environment where you have to keep cleaning the coolers externally to keep the compressor cool and the air filter is continually dirty when you inspect it periodically; then you have a dirty environment. Use the monthly recommendations and not the hours of run time.

2) Hours of operation (less than 4000 hrs per year)

In this case the recommendation would be to follow the time frame set out for preventative maintenance as described in the operations manual. Use monthly intervals for filter changes and not the hours of operation as your guide. This means air and oil filters changed every quarter (or more frequently) as well as air/oil separators changed per instruction manual. Please note if you are running 24 hrs / 7 days then air and oil filters will need to be changed in accordance with OEM recommendations.

3) Costs

Costs of preventative maintenance should be only considered as a last resort as it has been proven in many studies that preventative maintenance saves money. A proper preventative maintenance program will translate into more reliable operation and less down times for the owner. This will create a more efficient production process for the owner which generates income on a consistent basis.

In all other instances the OEM manual should be used as a guideline for changing all filters for the proper maintenance your rotary screw compressor.

A properly maintained air compressor can be accomplished by following several practical guidelines and discussing your needs with an FS-Curtis compressed air professional. To learn more download the product information or contact your local FS Curtis distributor.

Air Receiving Sizing

When specifying a compressed air system for optimum operation and energy efficiency, proper selection of the compressed air receiver tank(s) is one of the most critical decisions one can make.  There are several different “rules of thumb” and formulas that will assist you, but finding straightforward guidance that says “use this size air receiver” is difficult if not non-existent.

Air receivers can be used in several different ways in a compressed air system:

  • “Primary” receiver between the supply side (air compressor and ancillary equipment), and the demand side (your plant). Today’s air compressor controls (on/ off-line, modulation, and variable frequency) strive to maximize energy efficiency and smooth compressor operation by responding to demand side pressure changes sensed at the discharge of the  package.

A properly sized air receiver acts as a “buffer” and minimizes the effect of dynamic demand side pressure changes, allowing the compressor controls to operate smoothly and consistently.  The end result is less energy used, longer component life, and consistency in plant air pressure.

  • “Secondary” receiver typically on the demand side, at the point of use to minimize the effect large intermittent air demands have on the overall compressed air system.

 

Sizing a PRIMARY receiver for general FIXED SPEED APPLICATIONS:

  • The air compressor industry has widely accepted the general rule of thumb that a properly sized air receiver for a fixed speed compressor should be between 1-2 gallons per CFM output of the compressor.

Example: a 100 CFM fixed speed air compressor should have an air receiver between 100-200 gallons sitting next to it. Err on the high side if your budget permits.

Sizing a PRIMARY receiver for general VARIABLE SPEED APPLICATIONS:

  • When considering air receiver sizing on a variable speed drive application, the general rule of thumb is between 2-4 gallons per CFM output of the compressor.

Example: a 100 CFM variable speed air compressor should have an air receiver between 200-400 gallons sitting next to it. Err on the high side if your budget permits.

Useful Air Receiver Sizing Formulas (Primary and Secondary):

Use this formula when you have an existing air receiver

and need to know how long you can draw CFM greater than the output of the air compressor, from the receiver, while still maintaining system pressure:

  • T = R x P1 – P2 Qr – Qc      7

Use this formula to determine what receiver size to use to supply pressure for a given period of time, not allowing the system to drop below a minimum pressure. The demand of air is greater than the CFM output of the air compressor:

  • R = 7 x (Qr – Qc) x T

P1 – P2

Use this formula to determine how long it will take to recharge an air receiver to P1, after demand goes back to being below CFM output of the air compressor:

  • T = R x (P2 – P1)

Qr – Qc x 14.7

T = Time in minutes

R = Receiver in cubic feet Qr = CFM removed

Qc = Compressor output in CFM

P1 = Maximum air receiver pressure P2 = Minimum air receiver pressure

14.7 = Atmospheric pressure in PSI (sea level)

CUBIC FT to GALLON CONVERSION: 7.48 gallons in a cubic foot

Why the FS-Connect Piping System?

Why the FS-Connect Piping System?

Do you have problems with the pressure, flow or quality of your air that is affecting your products, increasing your scrap rate due to rejections in quality, efficiency, tooling costs due to increased maintenance or spraying applications like paint jobs?

Then you may want to review your compressed air piping system for a start in enhancing your operation and savings.

What You Need to Consider When Selecting Piping?

  1. Know your installation & ambient conditions.

Consider the environment the piping system will be installed in. There are many elements that can induce corrosion. Some harsh chemicals or fumes could have an adverse effect on the pipe. Installation conditions could play a role in the effectiveness of your system and life cycle of the pipe.

  1. Know your flow, the temperature and the pressure min and max requirements.

For safety and overall performance, the flow, the temperature and the pressure should be reviewed and discussed thoroughly before a choice of pipe is made.

  1. Review the budget and plan for possible expansion in the future.

All pipe options have different price points, different installation requirements and options for future expansion. It’s best to consider all of these factors before choosing the product that will be best for your installation.

The benefit of the FS-Connect Piping System (aluminum) is ease of installation at an extremely competitive cost advantage when compared to traditional piping systems. Our system offers non-plastic fittings for durability and many different mounting brackets to handle all the installation requirements for any location. The FS-Connect Piping is simple, cost-effective and will impact your compressed air system and bottom-line in a positive manner.

As with anything there are always many ways to accomplish the same end result, just with differing energy, thought and cost to get that same end result. If you can have the best quality of air with the least amount of headaches and least amount of waste in terms of production and maintenance for the least cost, wouldn’t you choose that solution? If you are interested in savings and ease of mind the FS-Connect Piping System offers the most flexibility for design and install over all of the other technologies. No sweating is required as with copper piping, no threading, pipe dope and labor intensive cutting and hanging as with the black malleable piping. The copper and black pipe is very heavy and cumbersome to handle making for costly, labor eating installations. The shipping and handling that is involved in the traditional pipe drives the costs even higher. These other technologies also need the special tooling required for the projects. Aside from the installation drawbacks of black pipe and copper pipe one must also be aware of the corrosion that starts attacking these piping materials from the onset. Copper is not nearly as bad from a corrosion point compared to black iron piping, however copper still corrodes over time and does have the high cost factor for installations due to the rising price of copper and labor to sweat.

The Benefits of Using FS-Connect Piping System

The FS-Curtis Aluminum Piping System’s benefits include:

• Energy efficient
• Lower installation costs
• Push-to-connect technology
• Immediate pressurization
• Removable and reusable
• Modular design
• No corrosion
• Leak-free guarantee
• Full bore design
• 1/2" - 6" pipe sizes

Learn More About The FS-Connect Piping System

Learn More About The FS-Connect